All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded solutions of the Dirichlet problem for the Stokes resolvent system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460693" target="_blank" >RIV/67985840:_____/16:00460693 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/17476933.2016.1200565" target="_blank" >http://dx.doi.org/10.1080/17476933.2016.1200565</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/17476933.2016.1200565" target="_blank" >10.1080/17476933.2016.1200565</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded solutions of the Dirichlet problem for the Stokes resolvent system

  • Original language description

    The paper studies the Dirichlet problem for the Stokes resolvent system for bounded boundary data on bounded and unbounded domains with compact Ljapunov boundary. (The boundary might be disconnected.) For a bounded domain we prove the existence of a unique solution of the problem such that the velocity part is bounded. For an unbounded domain we prove the existence of a such solution. But this solution is not unique. We characterize all solutions of the problem. As a consequence we study bounded solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system At last we prove a generalized maximum principle for a solution of the Stokes resolvent system such that the velocity part is bounded.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Complex Variables and Elliptic Equations. An International Journal

  • ISSN

    1747-6933

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    27

  • Pages from-to

    1689-1715

  • UT code for WoS article

    000389317000007

  • EID of the result in the Scopus database

    2-s2.0-84976351989