Bounded solutions of the Dirichlet problem for the Stokes resolvent system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00460693" target="_blank" >RIV/67985840:_____/16:00460693 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/17476933.2016.1200565" target="_blank" >http://dx.doi.org/10.1080/17476933.2016.1200565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17476933.2016.1200565" target="_blank" >10.1080/17476933.2016.1200565</a>
Alternative languages
Result language
angličtina
Original language name
Bounded solutions of the Dirichlet problem for the Stokes resolvent system
Original language description
The paper studies the Dirichlet problem for the Stokes resolvent system for bounded boundary data on bounded and unbounded domains with compact Ljapunov boundary. (The boundary might be disconnected.) For a bounded domain we prove the existence of a unique solution of the problem such that the velocity part is bounded. For an unbounded domain we prove the existence of a such solution. But this solution is not unique. We characterize all solutions of the problem. As a consequence we study bounded solutions of the Dirichlet problem for the Darcy-Forchheimer-Brinkman system At last we prove a generalized maximum principle for a solution of the Stokes resolvent system such that the velocity part is bounded.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Variables and Elliptic Equations. An International Journal
ISSN
1747-6933
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
27
Pages from-to
1689-1715
UT code for WoS article
000389317000007
EID of the result in the Scopus database
2-s2.0-84976351989