All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence and Uniqueness of Strong Stationary Solutions for Compressible Flows

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00502449" target="_blank" >RIV/67985840:_____/18:00502449 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/18:10388565

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-13344-7_65" target="_blank" >http://dx.doi.org/10.1007/978-3-319-13344-7_65</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-13344-7_65" target="_blank" >10.1007/978-3-319-13344-7_65</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence and Uniqueness of Strong Stationary Solutions for Compressible Flows

  • Original language description

    This chapter contains a survey of results in the existence theory of strong solutions to the steady compressible Navier–Stokes system. In the first part, the compressible Navier–Stokes equations are studied in bounded domains, both for homogeneous (no inflow) and inhomogeneous (inflow) boundary conditions. The solutions are constructed in Sobolev spaces. The next part contains the results for unbounded domains, especially for the exterior domains. Here, not only the question of existence and uniqueness is considered, but also the asymptotic structure near infinity is studied. Due to the different nature of the problems, the two- and three-dimensional problems are treated separately.

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

  • ISBN

    978-3-319-13343-0

  • Number of pages of the result

    57

  • Pages from-to

    2663-2719

  • Number of pages of the book

    3045

  • Publisher name

    Springer

  • Place of publication

    Cham

  • UT code for WoS chapter