Existence and Uniqueness of Strong Stationary Solutions for Compressible Flows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00502449" target="_blank" >RIV/67985840:_____/18:00502449 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/18:10388565
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_65" target="_blank" >http://dx.doi.org/10.1007/978-3-319-13344-7_65</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-13344-7_65" target="_blank" >10.1007/978-3-319-13344-7_65</a>
Alternative languages
Result language
angličtina
Original language name
Existence and Uniqueness of Strong Stationary Solutions for Compressible Flows
Original language description
This chapter contains a survey of results in the existence theory of strong solutions to the steady compressible Navier–Stokes system. In the first part, the compressible Navier–Stokes equations are studied in bounded domains, both for homogeneous (no inflow) and inhomogeneous (inflow) boundary conditions. The solutions are constructed in Sobolev spaces. The next part contains the results for unbounded domains, especially for the exterior domains. Here, not only the question of existence and uniqueness is considered, but also the asymptotic structure near infinity is studied. Due to the different nature of the problems, the two- and three-dimensional problems are treated separately.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
ISBN
978-3-319-13343-0
Number of pages of the result
57
Pages from-to
2663-2719
Number of pages of the book
3045
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—