Very weak solutions to the rotating Stokes, Oseen and Navier–Stokes problems in weighted spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462088" target="_blank" >RIV/67985840:_____/16:00462088 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/16:00309219
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201400052" target="_blank" >http://dx.doi.org/10.1002/mana.201400052</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201400052" target="_blank" >10.1002/mana.201400052</a>
Alternative languages
Result language
angličtina
Original language name
Very weak solutions to the rotating Stokes, Oseen and Navier–Stokes problems in weighted spaces
Original language description
We consider the linearized and nonlinear problems arising from the motion of fluid flow around a rotating rigid body. We are interested in very weak solutions of these problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
289
Issue of the periodical within the volume
11-12
Country of publishing house
DE - GERMANY
Number of pages
22
Pages from-to
1466-1487
UT code for WoS article
000382970600010
EID of the result in the Scopus database
2-s2.0-84982145799