Existence of weak solutions for compressible Navier-Stokes equations with entropy transport
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462771" target="_blank" >RIV/67985840:_____/16:00462771 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/16:10333388
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2016.06.029" target="_blank" >http://dx.doi.org/10.1016/j.jde.2016.06.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2016.06.029" target="_blank" >10.1016/j.jde.2016.06.029</a>
Alternative languages
Result language
angličtina
Original language name
Existence of weak solutions for compressible Navier-Stokes equations with entropy transport
Original language description
We consider the compressible Navier–Stokes system with variable entropy. The pressure is a nonlinear function of the density and the entropy/potential temperature which, unlike in the Navier–Stokes–Fourier system, satisfies only the transport equation. We provide existence results within three alternative weak formulations of the corresponding classical problem. Our constructions hold for the optimal range of the adiabatic coefficients from the point of view of the nowadays existence theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
261
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
38
Pages from-to
4448-4485
UT code for WoS article
000382272800006
EID of the result in the Scopus database
2-s2.0-84978807296