Separable reductions and rich families in theory of Fréchet subdifferentials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462793" target="_blank" >RIV/67985840:_____/16:00462793 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Separable reductions and rich families in theory of Fréchet subdifferentials
Original language description
In a recent paper [Separable reduction in the theory of Fréchet subdifferentials, Set-Valued Var. Anal. 21(4) (2013) 661–-671] we presented the separable reduction for a general statement covering practically all important properties of Fréchet subdifferentials, in particular: the non-emptiness of subdifferentials, the non-zeroness of normal cones, the fuzzy calculus, and the extremal principle; all statements being considered in the Fréchet sense. As in earlier studies of various separable reduction techniques, this was done with the help of suitable cofinal families of separable subspaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
631-648
UT code for WoS article
000385046700001
EID of the result in the Scopus database
2-s2.0-84994655353