Stability for semilinear parabolic problems in L_2 and W^{1,2}
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00462816" target="_blank" >RIV/67985840:_____/16:00462816 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/ZAA/1568" target="_blank" >http://dx.doi.org/10.4171/ZAA/1568</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ZAA/1568" target="_blank" >10.4171/ZAA/1568</a>
Alternative languages
Result language
angličtina
Original language name
Stability for semilinear parabolic problems in L_2 and W^{1,2}
Original language description
Asymptotic stability is studied for semilinear parabolic problems in $L_2 (Omega)$ and interpolation spaces. Some known results about stability in $W^{1,2} (Omega)$ are improved for semilinear parabolic systems with mixed boundary conditions. The approach is based on Amann’s power extrapolation scales. In the Hilbert space setting, a better understanding of this approach is provided for operators satisfying Kato’s square root problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Analysis und Ihre Anwendungen
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
333-357
UT code for WoS article
000388453800005
EID of the result in the Scopus database
2-s2.0-84988884697