Heterotic reduction of Courant algebroid connections and Einstein-Hilbert actions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00463321" target="_blank" >RIV/67985840:_____/16:00463321 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/16:10333648
Result on the web
<a href="http://dx.doi.org/10.1016/j.nuclphysb.2016.04.038" target="_blank" >http://dx.doi.org/10.1016/j.nuclphysb.2016.04.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nuclphysb.2016.04.038" target="_blank" >10.1016/j.nuclphysb.2016.04.038</a>
Alternative languages
Result language
angličtina
Original language name
Heterotic reduction of Courant algebroid connections and Einstein-Hilbert actions
Original language description
We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to generalized (bosonic) Einstein–Hilbert type of actions known from supergravity. In particular, we carefully analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar curvature.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nuclear Physics. B
ISSN
0550-3213
e-ISSN
—
Volume of the periodical
909
Issue of the periodical within the volume
August
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
36
Pages from-to
86-121
UT code for WoS article
000381648400006
EID of the result in the Scopus database
2-s2.0-84965157937