Factorization of cp-rank-3 completely positive matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00463394" target="_blank" >RIV/67985840:_____/16:00463394 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-016-0303-9" target="_blank" >http://dx.doi.org/10.1007/s10587-016-0303-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-016-0303-9" target="_blank" >10.1007/s10587-016-0303-9</a>
Alternative languages
Result language
angličtina
Original language name
Factorization of cp-rank-3 completely positive matrices
Original language description
A symmetric positive semi-definite matrix A is called completely positive if there exists a matrix B with nonnegative entries such that A = BB⊤. If B is such a matrix with a minimal number p of columns, then p is called the cp-rank of A. In this paper we develop a finite and exact algorithm to factorize any matrix A of cp-rank 3. Failure of this algorithm implies that A does not have cp-rank 3. Our motivation stems from the question if there exist three nonnegative polynomials of degree at most four that vanish at the boundary of an interval and are orthonormal with respect to a certain inner product.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-02067S" target="_blank" >GA14-02067S: Advanced methods for flow-field analysis</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
955-970
UT code for WoS article
000386074600027
EID of the result in the Scopus database
2-s2.0-84991325311