All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A rigorous justification of the Euler and Navier-Stokes equations with geometric effects

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00466755" target="_blank" >RIV/67985840:_____/16:00466755 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/15M1048963" target="_blank" >http://dx.doi.org/10.1137/15M1048963</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/15M1048963" target="_blank" >10.1137/15M1048963</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A rigorous justification of the Euler and Navier-Stokes equations with geometric effects

  • Original language description

    We derive the one-dimensional (1D) isentropic Euler and Navier--Stokes equations describing the motion of a gas through a nozzle of variable cross section as the asymptotic limit of the 3D isentropic Navier--Stokes system in a cylinder, the diameter of which tends to zero. Our method is based on the relative energy inequality satisfied by any weak solution of the 3D Navier--Stokes system and a variant of the Korn--Poincaré inequality on thin channels that may be of independent interest.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Mathematical Analysis

  • ISSN

    0036-1410

  • e-ISSN

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    24

  • Pages from-to

    3907-3930

  • UT code for WoS article

    000391857800010

  • EID of the result in the Scopus database

    2-s2.0-85007042031