Proof complexity of intuitionistic implicational formulas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00464411" target="_blank" >RIV/67985840:_____/17:00464411 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apal.2016.09.003" target="_blank" >http://dx.doi.org/10.1016/j.apal.2016.09.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2016.09.003" target="_blank" >10.1016/j.apal.2016.09.003</a>
Alternative languages
Result language
angličtina
Original language name
Proof complexity of intuitionistic implicational formulas
Original language description
We study implicational formulas in the context of proof complexity of intuitionistic propositional logic (IPC). On the one hand, we give an efficient transformation of tautologies to implicational tautologies that preserves the lengths of intuitionistic extended Frege (EF) or substitution Frege (SF) proofs up to a polynomial. On the other hand, EF proofs in the implicational fragment of IPC polynomially simulate full intuitionistic logic for implicational tautologies. The results also apply to other fragments of other superintuitionistic logics under certain conditions. In particular, the exponential lower bounds on the length of intuitionistic EF proofs by Hrubeš (2007), generalized to exponential separation between EF and SF systems in superintuitionistic logics of unbounded branching by Jeřábek (2009), can be realized by implicational tautologies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Volume of the periodical
168
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
41
Pages from-to
150-190
UT code for WoS article
000387529200008
EID of the result in the Scopus database
2-s2.0-84994908939