Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00468917" target="_blank" >RIV/67985840:_____/17:00468917 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/17:00320445
Result on the web
<a href="http://dx.doi.org/10.1007/s00033-016-0760-x" target="_blank" >http://dx.doi.org/10.1007/s00033-016-0760-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-016-0760-x" target="_blank" >10.1007/s00033-016-0760-x</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity
Original language description
We consider weak (“Leray”) solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in an exterior domain. It is shown the velocity may be split into a constant times the first column of the fundamental solution of the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which is higher than the decay rate of the Oseen tensor. This result improves the theory by Kyed (Q Appl Math 71:489–500, 2013).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für angewandte Mathematik und Physik
ISSN
0044-2275
e-ISSN
—
Volume of the periodical
68
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
—
UT code for WoS article
000395104800016
EID of the result in the Scopus database
2-s2.0-85007000702