All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00468917" target="_blank" >RIV/67985840:_____/17:00468917 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21220/17:00320445

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00033-016-0760-x" target="_blank" >http://dx.doi.org/10.1007/s00033-016-0760-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00033-016-0760-x" target="_blank" >10.1007/s00033-016-0760-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity

  • Original language description

    We consider weak (“Leray”) solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in an exterior domain. It is shown the velocity may be split into a constant times the first column of the fundamental solution of the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which is higher than the decay rate of the Oseen tensor. This result improves the theory by Kyed (Q Appl Math 71:489–500, 2013).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für angewandte Mathematik und Physik

  • ISSN

    0044-2275

  • e-ISSN

  • Volume of the periodical

    68

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000395104800016

  • EID of the result in the Scopus database

    2-s2.0-85007000702