Note to the problem of asymptotic behavior of viscous incompressible flow around a rotating body
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00461455" target="_blank" >RIV/67985840:_____/16:00461455 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.crma.2016.05.013" target="_blank" >http://dx.doi.org/10.1016/j.crma.2016.05.013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.crma.2016.05.013" target="_blank" >10.1016/j.crma.2016.05.013</a>
Alternative languages
Result language
angličtina
Original language name
Note to the problem of asymptotic behavior of viscous incompressible flow around a rotating body
Original language description
We consider weak solutions to the stationary Navier–Stokes system with Oseen and rotational terms, in an exterior domain. We are interested in the leading term for the velocity field and its gradient. Moreover, we deal with the asymptotic behavior at infinity. We proved that the velocity may be split, within constants, into the first column of the fundamental solution to the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which is higher than the decay rate of the Oseen tensor. This result improves the theory proposed by M. Kyed [Asymptotic profile of a linearized flow past a rotating body, Q. Appl. Math. 71 (2013) 489–500; On the asymptotic structure of a Navier–Stokes flow past a rotating body, J. Math. Soc. Jpn. 66 (2014) 1–16].
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Comptes Rendus Mathematique
ISSN
1631-073X
e-ISSN
—
Volume of the periodical
354
Issue of the periodical within the volume
8
Country of publishing house
FR - FRANCE
Number of pages
5
Pages from-to
794-798
UT code for WoS article
000382317700009
EID of the result in the Scopus database
2-s2.0-84973577746