On the Oseen-Brinkman flow around an (m-1)-dimensional solid obstacle
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474335" target="_blank" >RIV/67985840:_____/17:00474335 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00605-016-0981-2" target="_blank" >http://dx.doi.org/10.1007/s00605-016-0981-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00605-016-0981-2" target="_blank" >10.1007/s00605-016-0981-2</a>
Alternative languages
Result language
angličtina
Original language name
On the Oseen-Brinkman flow around an (m-1)-dimensional solid obstacle
Original language description
The purpose of this paper is to develop a layer potential analysis in order to show the well-posedness result of a transmission problem for the Oseen and Brinkman systems in open sets with compact Lipschitz boundaries and around a lower dimensional solid obstacle, when the boundary data belong to some Lebesgue's spaces. In the tree dimensional space or if the Brinkman system is given on bounded open set then there exists a solution of the transmission problem for arbitrary data. If the Brinkman system is given on exterior open set in the plane then necessary and sufficient conditions for the existence of a solution of the transmission problem are stated. A solution of the transmission problem is not unique. All solutions of the problem are found.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Monatshefte für Mathematik
ISSN
0026-9255
e-ISSN
—
Volume of the periodical
183
Issue of the periodical within the volume
2
Country of publishing house
AT - AUSTRIA
Number of pages
34
Pages from-to
269-302
UT code for WoS article
000400451600004
EID of the result in the Scopus database
2-s2.0-84991096048