Odd Structures Are Odd
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00474671" target="_blank" >RIV/67985840:_____/17:00474671 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10335226
Result on the web
<a href="http://dx.doi.org/10.1007/s00006-016-0720-8" target="_blank" >http://dx.doi.org/10.1007/s00006-016-0720-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-016-0720-8" target="_blank" >10.1007/s00006-016-0720-8</a>
Alternative languages
Result language
angličtina
Original language name
Odd Structures Are Odd
Original language description
By an odd structure we mean an algebraic structure in the category of graded vector spaces whose structure operations have odd degrees. Particularly important are odd modular operads which appear as Feynman transforms of modular operads and, as such, describe some structures of string field theory. We will explain how odd structures are affected by the choice of the monoidal structure of the underlying category. We will then present two ‘natural’ and ‘canonical’ constructions of an odd modular endomorphism operad leading to different results, only one being correct. This contradicts the generally accepted belief that the systematic use of the Koszul sign rule leads to correct signs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1567-1580
UT code for WoS article
000401669000041
EID of the result in the Scopus database
2-s2.0-84986321996