All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The uniqueness of the Fisher metric as information metric

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476158" target="_blank" >RIV/67985840:_____/17:00476158 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10463-016-0562-0" target="_blank" >http://dx.doi.org/10.1007/s10463-016-0562-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10463-016-0562-0" target="_blank" >10.1007/s10463-016-0562-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The uniqueness of the Fisher metric as information metric

  • Original language description

    We define a mixed topology on the fiber space (Formula presented.) over the space (Formula presented.) of all finite non-negative measures (Formula presented.) on a separable metric space (Formula presented.) provided with Borel (Formula presented.)-algebra. We define a notion of strong continuity of a covariant n-tensor field on (Formula presented.). Under the assumption of strong continuity of an information metric, we prove the uniqueness of the Fisher metric as information metric on statistical models associated with (Formula presented.). Our proof realizes a suggestion due to Amari and Nagaoka to derive the uniqueness of the Fisher metric from the special case proved by Chentsov by using a special kind of limiting procedure. The obtained result extends the monotonicity characterization of the Fisher metric on statistical models associated with finite sample spaces and complement the uniqueness theorem by Ay–Jost–Le–Schwachhöfer that characterizes the Fisher metric.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of the Institute of Statistical Mathematics

  • ISSN

    0020-3157

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    JP - JAPAN

  • Number of pages

    18

  • Pages from-to

    879-896

  • UT code for WoS article

    000405510700007

  • EID of the result in the Scopus database

    2-s2.0-84968546909