All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Diffeological statistical models, the Fisher metric and probabilistic mappings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521519" target="_blank" >RIV/67985840:_____/20:00521519 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3390/math8020167" target="_blank" >https://doi.org/10.3390/math8020167</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8020167" target="_blank" >10.3390/math8020167</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Diffeological statistical models, the Fisher metric and probabilistic mappings

  • Original language description

    We introduce the notion of a C^k -diffeological statistical model, which allows us to apply the theory of diffeological spaces to (possibly singular) statistical models. In particular, we introduce a class of almost 2-integrable C^k -diffeological statistical models that encompasses all known statistical models for which the Fisher metric is defined. This class contains a statistical model which does not appear in the Ay–Jost–Lê–Schwachhöfer theory of parametrized measure models. Then, we show that, for any positive integer k , the class of almost 2-integrable C^k -diffeological statistical models is preserved under probabilistic mappings. Furthermore, the monotonicity Theorem for the Fisher metric also holds for this class. As a consequence, the Fisher metric on an almost 2-integrable C^k -diffeological statistical model P⊂P(X) is preserved under any probabilistic mapping T:X⇝Y that is sufficient w.r.t. P. Finally, we extend the Cramér–Rao inequality to the class of 2-integrable C^k -diffeological statistical models.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GC18-01953J" target="_blank" >GC18-01953J: Geometric methods in statistical learning theory and applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    167

  • UT code for WoS article

    000519234000022

  • EID of the result in the Scopus database

    2-s2.0-85080125263