The Cramér-Rao inequality on singular statistical models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00481328" target="_blank" >RIV/67985840:_____/17:00481328 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-68445-1_64" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68445-1_64</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68445-1_64" target="_blank" >10.1007/978-3-319-68445-1_64</a>
Alternative languages
Result language
angličtina
Original language name
The Cramér-Rao inequality on singular statistical models
Original language description
We introduce the notions of essential tangent space and reduced Fisher metric and extend the classical Cramér-Rao inequality to $2$-integrable (possibly singular) statistical models for general $varphi$-estimators, where $varphi$ is a $V$-valued feature function and $V$ is a topological vector space. We show the existence of a $varphi$-efficient estimator on strictly singular statistical models associated with a finite sample space and on a class of infinite dimensional exponential models that have been discovered by Fukumizu. We conclude that our general Cramér-Rao inequality is optimal.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Geometric Science of Information. GSI 2017
ISBN
978-3-319-68444-4
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
552-560
Publisher name
Springer
Place of publication
Cham
Event location
Paris
Event date
Nov 7, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000440482500064