All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonparametric estimations and the diffeological Fisher metric

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544050" target="_blank" >RIV/67985840:_____/21:00544050 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-030-77957-3_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-77957-3_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-77957-3_7" target="_blank" >10.1007/978-3-030-77957-3_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonparametric estimations and the diffeological Fisher metric

  • Original language description

    In this paper, first, we survey the concept of diffeological Fisher metric and its naturality, using functorial language of probabilistic morphisms, and slightly extending Lê’s theory in [Le2020] to include weakly Ck-diffeological statistical models. Then we introduce the resulting notions of the diffeological Fisher distance, the diffeological Hausdorff–Jeffrey measure and explain their role in classical and Bayesian nonparametric estimation problems in statistics.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Geometric Structures of Statistical Physics, Information Geometry, and Learning

  • ISBN

    978-3-030-77956-6

  • ISSN

    2194-1009

  • e-ISSN

  • Number of pages

    19

  • Pages from-to

    120-138

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Les Houches

  • Event date

    Jul 27, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article