Global existence result for the generalized Peterlin viscoelastic model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00476960" target="_blank" >RIV/67985840:_____/17:00476960 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/16M1068505" target="_blank" >http://dx.doi.org/10.1137/16M1068505</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/16M1068505" target="_blank" >10.1137/16M1068505</a>
Alternative languages
Result language
angličtina
Original language name
Global existence result for the generalized Peterlin viscoelastic model
Original language description
We consider a class of differential models of viscoelastic fluids with diffusive stress. These constitutive models are motivated by Peterlin dumbbell theories with a nonlinear spring law for an infinitely extensible spring. A diffusion term is included in the constitutive model. Under appropriate assumptions on the nonlinear constitutive functions, we prove global existence of weak solutions for large data. For creeping flows and two-dimensional flows, we prove the global existence of a classical solution under stronger assumptions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-00522S" target="_blank" >GA13-00522S: Qualitative analysis and numerical solution of problems of flows in generally time-dependent domains with various boundary conditions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
—
Volume of the periodical
49
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
2950-2964
UT code for WoS article
000408928900017
EID of the result in the Scopus database
2-s2.0-85028594065