Some Crandall–Rabinowitz type results and applications toreaction–diffusion systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00481828" target="_blank" >RIV/67985840:_____/18:00481828 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.10.032" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2017.10.032</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.10.032" target="_blank" >10.1016/j.jmaa.2017.10.032</a>
Alternative languages
Result language
angličtina
Original language name
Some Crandall–Rabinowitz type results and applications toreaction–diffusion systems
Original language description
For a small Lipschitz perturbation of a smooth equation the existence of exactly two bifurcation points near a simple eigenvalue is shown. The result is applied to reaction–diffusion systems subject to Turing’s diffusion-driven instability under small unilateral obstacles.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
458
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
1324-1343
UT code for WoS article
000417771900027
EID of the result in the Scopus database
2-s2.0-85031669411