Algebraic proofs for shallow water bi-Hamiltonian systems for three cocycle of the semi-direct product of Kac-Moody and Virasoro Lie algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00487353" target="_blank" >RIV/67985840:_____/18:00487353 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/math-2018-0002" target="_blank" >http://dx.doi.org/10.1515/math-2018-0002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/math-2018-0002" target="_blank" >10.1515/math-2018-0002</a>
Alternative languages
Result language
angličtina
Original language name
Algebraic proofs for shallow water bi-Hamiltonian systems for three cocycle of the semi-direct product of Kac-Moody and Virasoro Lie algebras
Original language description
We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac-Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Mathematics
ISSN
2391-5455
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
8
Pages from-to
1-8
UT code for WoS article
000428390200002
EID of the result in the Scopus database
2-s2.0-85042087800