All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Algebraic proofs for shallow water bi-Hamiltonian systems for three cocycle of the semi-direct product of Kac-Moody and Virasoro Lie algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00487353" target="_blank" >RIV/67985840:_____/18:00487353 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1515/math-2018-0002" target="_blank" >http://dx.doi.org/10.1515/math-2018-0002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/math-2018-0002" target="_blank" >10.1515/math-2018-0002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Algebraic proofs for shallow water bi-Hamiltonian systems for three cocycle of the semi-direct product of Kac-Moody and Virasoro Lie algebras

  • Original language description

    We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac-Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Open Mathematics

  • ISSN

    2391-5455

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    8

  • Pages from-to

    1-8

  • UT code for WoS article

    000428390200002

  • EID of the result in the Scopus database

    2-s2.0-85042087800