On countable tightness and the Lindelöf property in non-Archimedean Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00488913" target="_blank" >RIV/67985840:_____/18:00488913 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On countable tightness and the Lindelöf property in non-Archimedean Banach spaces
Original language description
Let K be a non-archimedean valued field and let E be a non-archimedean Banach space over K. By E-w we denote the space E equipped with its weak topology and by E-w*(*) the dual space E* equipped with its weak* topology. Several results about countable tightness and the Lindelof property for E-w and E-w*(*) are provided. A key point is to prove that for a large class of infinite-dimensional polar Banach spaces E, countable tightness of E-w or E-w*(*) implies separability of K. As a consequence we obtain the following two characterizations of K : n(a) A non-archimedean valued field K is locally compact if and only if for every Banach space E over K the space E-w has countable tightness if and only if for every Banach space E over K the space E-w*(*) has the Lindelof property. n(b) A non-archimedean valued separable field K is spherically complete if and only if every Banach space E over K for which E-w has the Lindelof property must be separable if and only if every Banach space E over K for which E-w*(*) has countable tightness must be separable. Both results show how essentially different are non-archimedean counterparts from the 'classical' corresponding theorems for Banach spaces over the real or complex field.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Convex Analysis
ISSN
0944-6532
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
181-199
UT code for WoS article
000428115600011
EID of the result in the Scopus database
2-s2.0-85045912031