Low Mach number limit for a model of accretion disk
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489042" target="_blank" >RIV/67985840:_____/18:00489042 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3934/dcds.2018141" target="_blank" >http://dx.doi.org/10.3934/dcds.2018141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/dcds.2018141" target="_blank" >10.3934/dcds.2018141</a>
Alternative languages
Result language
angličtina
Original language name
Low Mach number limit for a model of accretion disk
Original language description
We study an hydrodynamical model describing the motion of thick astrophysical disks relying on compressible Navier-Stokes-Fourier-Poisson system. We also suppose that the medium is electrically charged and we include energy exchanges through radiative transfer. Supposing that the system is rotating, we study the singular limit of the system when the Mach number, the Alfven number and Froude number go to zero and we prove convergence to a 3D incompressible MHD system with radiation with two stationary linear transport equations for transport of radiation intensity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete and Continuous Dynamical Systems
ISSN
1078-0947
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
3239-3268
UT code for WoS article
000438843300003
EID of the result in the Scopus database
2-s2.0-85046352009