A long chain of P-points
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489985" target="_blank" >RIV/67985840:_____/18:00489985 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219061318500046" target="_blank" >http://dx.doi.org/10.1142/S0219061318500046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219061318500046" target="_blank" >10.1142/S0219061318500046</a>
Alternative languages
Result language
angličtina
Original language name
A long chain of P-points
Original language description
The notion of a (Formula presented.)-generic sequence of P-points is introduced in this paper. It is proved assuming the Continuum Hypothesis (CH) that for each (Formula presented.), any (Formula presented.)-generic sequence of P-points can be extended to an (Formula presented.)-generic sequence. This shows that the CH implies that there is a chain of P-points of length (Formula presented.) with respect to both Rudin–Keisler and Tukey reducibility. These results answer an old question of Andreas Blass.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Logic
ISSN
0219-0613
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
1
Country of publishing house
SG - SINGAPORE
Number of pages
38
Pages from-to
—
UT code for WoS article
000434039400004
EID of the result in the Scopus database
2-s2.0-85045183046