All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Holes and islands in random point sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10436868" target="_blank" >RIV/00216208:11320/22:10436868 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I0Z54R1w__" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I0Z54R1w__</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.21037" target="_blank" >10.1002/rsa.21037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Holes and islands in random point sets

  • Original language description

    For (Formula presented.), let S be a set of points in (Formula presented.) in general position. A set I of k points from S is a k-island in S if the convex hull (Formula presented.) of I satisfies (Formula presented.). A k-island in S in convex position is a k-hole in S. For (Formula presented.) and a convex body (Formula presented.) of volume 1, let S be a set of n points chosen uniformly and independently at random from K. We show that the expected number of k-holes in S is in (Formula presented.). Our estimate improves and generalizes all previous bounds. In particular, we estimate the expected number of empty simplices in S by (Formula presented.). This is tight in the plane up to a lower-order term. Our method gives an asymptotically tight upper bound (Formula presented.) even in the much more general setting, where we estimate the expected number of k-islands in S.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    19

  • Pages from-to

    308-326

  • UT code for WoS article

    000671793500001

  • EID of the result in the Scopus database

    2-s2.0-85109417804