All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Holes and islands in random point sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420193" target="_blank" >RIV/00216208:11320/20:10420193 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.SoCG.2020.14" target="_blank" >https://doi.org/10.4230/LIPIcs.SoCG.2020.14</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.SoCG.2020.14" target="_blank" >10.4230/LIPIcs.SoCG.2020.14</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Holes and islands in random point sets

  • Original language description

    For dELEMENT OFN, let S be a finite set of points in Rd in general position. A set H of k points from S is a emph{k-hole} in~S if all points from H lie on the boundary of the convex hull conv(H) of H and the interior of conv(H) does not contain any point from S. A set I of k points from S is a emph{k-island} in S if conv(I)INTERSECTIONS=I. Note that each k-hole in S is a k-island in S. For fixed positive integers d, k and a convex body K in~Rd with d-dimensional Lebesgue measure 1, let S be a set of n points chosen uniformly and independently at random from~K. We show that the expected number of k-islands in S is in O(nd). In the case k=d+1, we prove that the expected number of empty simplices (that is, (d+1)-holes) in S is at most 2d-1DOT OPERATOR d!DOT OPERATOR (nd). Our results improve and generalize previous bounds by Bárány and Füredi (1987), Valtr (1995), Fabila-Monroy and Huemer (2012), and Fabila-Monroy, Huemer, and Mitsche (2015).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-19158S" target="_blank" >GA18-19158S: Algorithmic, structural and complexity aspects of geometric and other configurations</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    36th International Symposium on Computational Geometry (SoCG 2020)

  • ISBN

    978-3-95977-143-6

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    16

  • Pages from-to

    1-16

  • Publisher name

    Dagstuhl Publishing, Germany

  • Place of publication

    Dagstuhl, Germany

  • Event location

    Švýcarsko

  • Event date

    Jun 23, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article