Existence of global weak solutions to the kinetic Peterlin model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490609" target="_blank" >RIV/67985840:_____/18:00490609 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.nonrwa.2018.05.016" target="_blank" >http://dx.doi.org/10.1016/j.nonrwa.2018.05.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nonrwa.2018.05.016" target="_blank" >10.1016/j.nonrwa.2018.05.016</a>
Alternative languages
Result language
angličtina
Original language name
Existence of global weak solutions to the kinetic Peterlin model
Original language description
We consider a class of kinetic models for polymeric fluids motivated by the Peterlin dumbbell theories for dilute polymer solutions with a nonlinear spring law for an infinitely extensible spring. The polymer molecules are suspended in an incompressible viscous Newtonian fluid confined to a bounded domain in two or three space dimensions. The unsteady motion of the solvent is described by the incompressible Navier–Stokes equations with the elastic extra stress tensor appearing as a forcing term in the momentum equation. The elastic stress tensor is defined by Kramer's expression through the probability density function that satisfies the corresponding Fokker–Planck equation. In this case a coefficient depending on the average length of polymer molecules appears in the latter equation. Following the recent work of Barrett and Süli (2018) we prove the existence of global-in-time weak solutions to the kinetic Peterlin model in two space dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Real World Applications
ISSN
1468-1218
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
December
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
465-478
UT code for WoS article
000440122100023
EID of the result in the Scopus database
2-s2.0-85048323650