All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Existence of global weak solutions to the kinetic Peterlin model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490609" target="_blank" >RIV/67985840:_____/18:00490609 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.nonrwa.2018.05.016" target="_blank" >http://dx.doi.org/10.1016/j.nonrwa.2018.05.016</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nonrwa.2018.05.016" target="_blank" >10.1016/j.nonrwa.2018.05.016</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Existence of global weak solutions to the kinetic Peterlin model

  • Original language description

    We consider a class of kinetic models for polymeric fluids motivated by the Peterlin dumbbell theories for dilute polymer solutions with a nonlinear spring law for an infinitely extensible spring. The polymer molecules are suspended in an incompressible viscous Newtonian fluid confined to a bounded domain in two or three space dimensions. The unsteady motion of the solvent is described by the incompressible Navier–Stokes equations with the elastic extra stress tensor appearing as a forcing term in the momentum equation. The elastic stress tensor is defined by Kramer's expression through the probability density function that satisfies the corresponding Fokker–Planck equation. In this case a coefficient depending on the average length of polymer molecules appears in the latter equation. Following the recent work of Barrett and Süli (2018) we prove the existence of global-in-time weak solutions to the kinetic Peterlin model in two space dimensions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nonlinear Analysis: Real World Applications

  • ISSN

    1468-1218

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    December

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    465-478

  • UT code for WoS article

    000440122100023

  • EID of the result in the Scopus database

    2-s2.0-85048323650