Strongly extreme points and approximation properties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00491931" target="_blank" >RIV/67985840:_____/18:00491931 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00323408
Result on the web
<a href="http://dx.doi.org/10.4153/CMB-2017-067-3" target="_blank" >http://dx.doi.org/10.4153/CMB-2017-067-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4153/CMB-2017-067-3" target="_blank" >10.4153/CMB-2017-067-3</a>
Alternative languages
Result language
angličtina
Original language name
Strongly extreme points and approximation properties
Original language description
We show that if x is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at x, then x is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the sufficient conditions mentioned.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-07378S" target="_blank" >GA16-07378S: Nonlinear analysis in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Canadian Mathematical Bulletin-Bulletin Canadien de Mathematiques
ISSN
0008-4395
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
3
Country of publishing house
CA - CANADA
Number of pages
9
Pages from-to
449-457
UT code for WoS article
000442702900001
EID of the result in the Scopus database
2-s2.0-85050410640