All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Separable reduction of local metric regularity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00495242" target="_blank" >RIV/67985840:_____/18:00495242 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1090/proc/14071" target="_blank" >http://dx.doi.org/10.1090/proc/14071</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/14071" target="_blank" >10.1090/proc/14071</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Separable reduction of local metric regularity

  • Original language description

    We prove that the property of a set-valued mapping $ F:X rightrightarrows Y$ to be locally metrically regular (and consequently, the properties of the mapping to be linearly open or pseudo-Lipschitz) is separably reducible by rich families of separable subspaces of $ Xtimes Y$. In fact, we prove that, moreover, this extends to computation of the functor $ {rm {reg}}, F$ that associates with $ F$ the rates of local metric regularity of $ F$ near points of its graph.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-00941S" target="_blank" >GA17-00941S: Topological and geometrical properties of Banach spaces and operator algebras II</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    146

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    5157-5167

  • UT code for WoS article

    000447836000014

  • EID of the result in the Scopus database

    2-s2.0-85061612459