Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00495258" target="_blank" >RIV/67985840:_____/18:00495258 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11425-017-9272-7" target="_blank" >http://dx.doi.org/10.1007/s11425-017-9272-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11425-017-9272-7" target="_blank" >10.1007/s11425-017-9272-7</a>
Alternative languages
Result language
angličtina
Original language name
Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law
Original language description
We consider the Navier-Stokes equations with a pressure function satisfying a hard-sphere law. That means the pressure, as a function of the density, becomes infinite when the density approaches a finite critical value. Under some structural constraints imposed on the pressure law, we show a weak-strong uniqueness principle in periodic spatial domains. The method is based on a modified relative entropy inequality for the system. The main difficulty is that the pressure potential associated with the internal energy of the system is largely dominated by the pressure itself in the area close to the critical density. As a result, several terms appearing in the relative energy inequality cannot be controlled by the total energy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science China Mathematics
ISSN
1674-7283
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
11
Country of publishing house
CN - CHINA
Number of pages
14
Pages from-to
2003-2016
UT code for WoS article
000447411300006
EID of the result in the Scopus database
2-s2.0-85052921099