All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00495258" target="_blank" >RIV/67985840:_____/18:00495258 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11425-017-9272-7" target="_blank" >http://dx.doi.org/10.1007/s11425-017-9272-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11425-017-9272-7" target="_blank" >10.1007/s11425-017-9272-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law

  • Original language description

    We consider the Navier-Stokes equations with a pressure function satisfying a hard-sphere law. That means the pressure, as a function of the density, becomes infinite when the density approaches a finite critical value. Under some structural constraints imposed on the pressure law, we show a weak-strong uniqueness principle in periodic spatial domains. The method is based on a modified relative entropy inequality for the system. The main difficulty is that the pressure potential associated with the internal energy of the system is largely dominated by the pressure itself in the area close to the critical density. As a result, several terms appearing in the relative energy inequality cannot be controlled by the total energy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science China Mathematics

  • ISSN

    1674-7283

  • e-ISSN

  • Volume of the periodical

    61

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CN - CHINA

  • Number of pages

    14

  • Pages from-to

    2003-2016

  • UT code for WoS article

    000447411300006

  • EID of the result in the Scopus database

    2-s2.0-85052921099