Characterization of interpolation between Grand, small or classical Lebesgue spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00496179" target="_blank" >RIV/67985840:_____/18:00496179 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2017.09.005" target="_blank" >http://dx.doi.org/10.1016/j.na.2017.09.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2017.09.005" target="_blank" >10.1016/j.na.2017.09.005</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of interpolation between Grand, small or classical Lebesgue spaces
Original language description
In this paper, we show that the interpolation spaces between Grand, small or classical Lebesgue are so called Lorentz–Zygmund spaces or more generally GΓ-spaces. As a direct consequence of our results any Lorentz–Zygmund space La,r(Log L)β, is an interpolation space in the sense of Peetre between either two Grand Lebesgue spaces or between two small spaces provided that 1 < a < ∞, β ̸= 0. The method consists in computing the so called K-functional of the interpolation space and in identifying the associated norm.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
177
Issue of the periodical within the volume
December
Country of publishing house
GB - UNITED KINGDOM
Number of pages
32
Pages from-to
422-453
UT code for WoS article
000449073400005
EID of the result in the Scopus database
2-s2.0-85031734562