All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Weakly curved A-infinity algebras over a topological local ring

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00505597" target="_blank" >RIV/67985840:_____/18:00505597 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.24033/msmf.467" target="_blank" >http://dx.doi.org/10.24033/msmf.467</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24033/msmf.467" target="_blank" >10.24033/msmf.467</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Weakly curved A-infinity algebras over a topological local ring

  • Original language description

    We define and study the derived categories of the first kind for curved DG and A-infinity algebras complete over a pro-Artinian local ring with the curvature elements divisible by the maximal ideal of the local ring. We develop the Koszul duality theory in this setting and deduce the generalizations of the conventional results about A-infinity modules to the weakly curved case. The formalism of contramodules and comodules over pro-Artinian topological rings is used throughout the paper. Our motivation comes from the Floer-Fukaya theory.

  • Czech name

  • Czech description

Classification

  • Type

    B - Specialist book

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • ISBN

    978-2-85629-899-2

  • Number of pages

    206

  • Publisher name

    Société Mathématique France

  • Place of publication

    Marseille

  • UT code for WoS book