Weakly curved A-infinity algebras over a topological local ring
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00505597" target="_blank" >RIV/67985840:_____/18:00505597 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.24033/msmf.467" target="_blank" >http://dx.doi.org/10.24033/msmf.467</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24033/msmf.467" target="_blank" >10.24033/msmf.467</a>
Alternative languages
Result language
angličtina
Original language name
Weakly curved A-infinity algebras over a topological local ring
Original language description
We define and study the derived categories of the first kind for curved DG and A-infinity algebras complete over a pro-Artinian local ring with the curvature elements divisible by the maximal ideal of the local ring. We develop the Koszul duality theory in this setting and deduce the generalizations of the conventional results about A-infinity modules to the weakly curved case. The formalism of contramodules and comodules over pro-Artinian topological rings is used throughout the paper. Our motivation comes from the Floer-Fukaya theory.
Czech name
—
Czech description
—
Classification
Type
B - Specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
978-2-85629-899-2
Number of pages
206
Publisher name
Société Mathématique France
Place of publication
Marseille
UT code for WoS book
—