A version of the Baer splitting problem for noetherian rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F08%3A10049866" target="_blank" >RIV/00216208:11320/08:10049866 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A version of the Baer splitting problem for noetherian rings
Original language description
We call a module M over a commutative noetherian ring R quasi-Baer in case Ext (M,T) = 0 for each locally artinian (= semiartinian) module T. We prove that all quasi--Baer modules are projective provided that R has finite Krull dimension, or R is of cardinality less than aleph_omega.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0510" target="_blank" >GA201/06/0510: Representations of associative rings and lattices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Models, Modules and Abelian Groups
ISBN
978-3-11-020303-5
Number of pages of the result
9
Pages from-to
—
Number of pages of the book
497
Publisher name
Walter de Gruyter
Place of publication
Berlin, New York
UT code for WoS chapter
—