Baer and Mittag-Leffler modules over tame hereditary algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10048593" target="_blank" >RIV/00216208:11320/10:10048593 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Baer and Mittag-Leffler modules over tame hereditary algebras
Original language description
We develop a structure theory for two classes of infinite dimensional modules over tame hereditary algebras R: the Baer, and the Mittag-Leffler ones. A right module M is called Baer if Ext(M,T) = 0 for all torsion modules T, and M is Mittag-Leffler in case the canonical map from (M otimes prod Q_i) to prod (M otimes Q_i) is injective for an each sequence of left modules (Q_i). We show that a module M is Baer iff it is p-filtered where p is the preprojective component of R. We apply this to prove that the universal localization of a Baer module with respect to a complete tube in the AR-quiver of R is always projective. In the final section, we give a complete classification of the Mittag-Leffler modules
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0510" target="_blank" >GA201/06/0510: Representations of associative rings and lattices</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Zeitschrift
ISSN
0025-5874
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
265
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
—
UT code for WoS article
000276149300001
EID of the result in the Scopus database
—