Geometric kernel formula relating prime forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00505713" target="_blank" >RIV/67985840:_____/18:00505713 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/ATMP.2018.v22.n7.a3" target="_blank" >http://dx.doi.org/10.4310/ATMP.2018.v22.n7.a3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/ATMP.2018.v22.n7.a3" target="_blank" >10.4310/ATMP.2018.v22.n7.a3</a>
Alternative languages
Result language
angličtina
Original language name
Geometric kernel formula relating prime forms
Original language description
We use geometric representation for the Szego kernel on genus $g + 1$ and genus g Riemann surfaces in order to derive formulas relating corresponding prime forms. The result is useful for computation of fermionic vertex algebra cohomology of smooth manifold foliations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Theoretical and Mathematical Physics
ISSN
1095-0761
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
1823-1829
UT code for WoS article
000471903600003
EID of the result in the Scopus database
2-s2.0-85068152496