Komlós's Tiling Theorem via Graphon Covers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00494407" target="_blank" >RIV/67985840:_____/19:00494407 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/19:00494407
Result on the web
<a href="http://dx.doi.org/10.1002/jgt.22365" target="_blank" >http://dx.doi.org/10.1002/jgt.22365</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22365" target="_blank" >10.1002/jgt.22365</a>
Alternative languages
Result language
angličtina
Original language name
Komlós's Tiling Theorem via Graphon Covers
Original language description
Komlós [Komlós: Tiling Turán Theorems, Combinatorica, 2000] determined the asymptotically optimal minimum‐degree condition for covering a given proportion of vertices of a host graph by vertex‐disjoint copies of a fixed graph H, thus essentially extending the Hajnal–Szemerédi theorem that deals with the case when H is a clique. We give a proof of a graphon version of Komlós's theorem. To prove this graphon version, and also to deduce from it the original statement about finite graphs, we use the machinery introduced in [Hladký, Hu, Piguet: Tilings in graphons, arXiv:1606.03113]. We further prove a stability version of Komlós's theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
24-45
UT code for WoS article
000450004500003
EID of the result in the Scopus database
2-s2.0-85056402571