Stability of strong solutions for a model of incompressible two--phase flow under thermal fluctuations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504395" target="_blank" >RIV/67985840:_____/19:00504395 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2019.03.006" target="_blank" >http://dx.doi.org/10.1016/j.jde.2019.03.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2019.03.006" target="_blank" >10.1016/j.jde.2019.03.006</a>
Alternative languages
Result language
angličtina
Original language name
Stability of strong solutions for a model of incompressible two--phase flow under thermal fluctuations
Original language description
We consider a model of a two–phase flow based on the phase field approach, where the fluid bulk velocity obeys the standard Navier–Stokes system while the concentration difference of the two fluids plays a role of order parameter governed by the Allen–Cahn equations. Possible thermal fluctuations are incorporated through a random forcing term in the Allen–Cahn equation. We show that suitable dissipative martingale solutions satisfy a stochastic version of the relative energy inequality. This fact is used for showing the weak–strong uniqueness principle both pathwise and in law.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
267
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
1836-1858
UT code for WoS article
000466399400011
EID of the result in the Scopus database
2-s2.0-85062882698