All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stability of strong solutions for a model of incompressible two--phase flow under thermal fluctuations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504395" target="_blank" >RIV/67985840:_____/19:00504395 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jde.2019.03.006" target="_blank" >http://dx.doi.org/10.1016/j.jde.2019.03.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2019.03.006" target="_blank" >10.1016/j.jde.2019.03.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stability of strong solutions for a model of incompressible two--phase flow under thermal fluctuations

  • Original language description

    We consider a model of a two–phase flow based on the phase field approach, where the fluid bulk velocity obeys the standard Navier–Stokes system while the concentration difference of the two fluids plays a role of order parameter governed by the Allen–Cahn equations. Possible thermal fluctuations are incorporated through a random forcing term in the Allen–Cahn equation. We show that suitable dissipative martingale solutions satisfy a stochastic version of the relative energy inequality. This fact is used for showing the weak–strong uniqueness principle both pathwise and in law.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Volume of the periodical

    267

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    1836-1858

  • UT code for WoS article

    000466399400011

  • EID of the result in the Scopus database

    2-s2.0-85062882698