The quotient/codimension problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504573" target="_blank" >RIV/67985840:_____/19:00504573 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s13398-018-0556-2" target="_blank" >http://dx.doi.org/10.1007/s13398-018-0556-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13398-018-0556-2" target="_blank" >10.1007/s13398-018-0556-2</a>
Alternative languages
Result language
angličtina
Original language name
The quotient/codimension problems
Original language description
If a Fréchet space admits a separable quotient, so do its countable-codimensional subspaces. We generalize to metrizable primitive spaces, function spaces, most (LF) -spaces, many others. New characterizations emerge: (1) A locally convex space E is primitive if and only if, given any closed countable-codimensional subspace F and dense subspace D in E, the intersection F⋂ D is dense in F, (2) A completely regular Hausdorff space X is pseudocompact if and only if every infinite-dimensional subspace of L p (X) admits a quotient that is properly separable in the sense of Robertson.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF16-34860L" target="_blank" >GF16-34860L: Logic and Topology in Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales
ISSN
1578-7303
e-ISSN
—
Volume of the periodical
113
Issue of the periodical within the volume
2
Country of publishing house
ES - SPAIN
Number of pages
15
Pages from-to
1429-1443
UT code for WoS article
000467148800068
EID of the result in the Scopus database
2-s2.0-85064927177