The first eigenvalue and eigenfunction of a nonlinear elliptic system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00505711" target="_blank" >RIV/67985840:_____/19:00505711 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apnum.2019.06.004" target="_blank" >http://dx.doi.org/10.1016/j.apnum.2019.06.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2019.06.004" target="_blank" >10.1016/j.apnum.2019.06.004</a>
Alternative languages
Result language
angličtina
Original language name
The first eigenvalue and eigenfunction of a nonlinear elliptic system
Original language description
In this paper, we study the first eigenvalue of a nonlinear elliptic system involving p-Laplacian as the differential operator. The principal eigenvalue of the system and the corresponding eigenfunction are investigated both analytically and numerically. An alternative proof to show the simplicity of the first eigenvalue is given. In addition, the upper and lower bounds of the first eigenvalue are provided. Then, a numerical algorithm is developed to approximate the principal eigenvalue. This algorithm generates a decreasing sequence of positive numbers and various examples numerically indicate its convergence. Further, the algorithm is generalized to a class of gradient quasilinear elliptic systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Volume of the periodical
145
Issue of the periodical within the volume
November
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
159-174
UT code for WoS article
000483408100010
EID of the result in the Scopus database
2-s2.0-85067361249