TWO-SIDED BOUNDS FOR EIGENVALUES OF DIFFERENTIAL OPERATORS WITH APPLICATIONS TO FRIEDRICHS, POINCARE, TRACE, AND SIMILAR CONSTANTS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10283100" target="_blank" >RIV/00216208:11320/14:10283100 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/14:00425594
Result on the web
<a href="http://dx.doi.org/10.1137/13091467X" target="_blank" >http://dx.doi.org/10.1137/13091467X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/13091467X" target="_blank" >10.1137/13091467X</a>
Alternative languages
Result language
angličtina
Original language name
TWO-SIDED BOUNDS FOR EIGENVALUES OF DIFFERENTIAL OPERATORS WITH APPLICATIONS TO FRIEDRICHS, POINCARE, TRACE, AND SIMILAR CONSTANTS
Original language description
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori-a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting and as a byproduct we prove an abstract inequality of Friedrichs-Poincare type. The abstract results are then applied to Friedrichs, Poincare,and trace inequalities and fully computable two-sided bounds on the optimal constants in these inequalities are obtained. Accuracy of the method is illustrated in numerical examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Numerical Analysis
ISSN
0036-1429
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
308-329
UT code for WoS article
000333419300017
EID of the result in the Scopus database
—