Three methods for two-sided bounds of eigenvalues-A comparison
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489414" target="_blank" >RIV/67985840:_____/18:00489414 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/num.22251" target="_blank" >http://dx.doi.org/10.1002/num.22251</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/num.22251" target="_blank" >10.1002/num.22251</a>
Alternative languages
Result language
angličtina
Original language name
Three methods for two-sided bounds of eigenvalues-A comparison
Original language description
We compare three finite element‐based methods designed for two‐sided bounds of eigenvalues of symmetric elliptic second order operators. The first method is known as the Lehmann–Goerisch method. The second method is based on Crouzeix–Raviart nonconforming finite element method. The third one is a combination of generalized Weinstein and Kato bounds with complementarity‐based estimators. We concisely describe these methods and use them to solve three numerical examples. We compare their accuracy, computational performance, and generality in both the lowest and higher order case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Methods for Partial Differential Equations
ISSN
0749-159X
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
1188-1208
UT code for WoS article
000430677500004
EID of the result in the Scopus database
2-s2.0-85045898777