Computing upper bounds on Friedrichs' constant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00376943" target="_blank" >RIV/67985840:_____/12:00376943 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Computing upper bounds on Friedrichs' constant
Original language description
This contribution shows how to compute upper bounds of the optimal constant in Friedrichs? and similar inequalities. The approach is based on the method of a prioria posteriori inequalities [9]. However, this method requires trial and test functions withcontinuous second derivatives. We show how to avoid this requirement and how to compute the bounds on Friedrichs? constant using standard finite element methods. This approach is quite general and allows variable coefficients and mixed boundary conditions. We use the computed upper bound on Friedrichs? constant in a posteriori error estimation to obtain guaranteed error bounds.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100760702" target="_blank" >IAA100760702: Methods of higher order of accuracy for solution of multi-physics coupled problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the International Conference Applications of Mathematics 2012
ISBN
978-80-85823-60-8
ISSN
—
e-ISSN
—
Number of pages
12
Pages from-to
278-289
Publisher name
Institute of Mathematics AS CR
Place of publication
Prague
Event location
Prague
Event date
May 2, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—