Guaranteed and fully computable two-sided bounds of Friedrichs' constant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00391459" target="_blank" >RIV/67985840:_____/13:00391459 - isvavai.cz</a>
Result on the web
<a href="http://users.math.cas.cz/panm/Panm16/proceedings_final/195_vejchodsky.pdf" target="_blank" >http://users.math.cas.cz/panm/Panm16/proceedings_final/195_vejchodsky.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Guaranteed and fully computable two-sided bounds of Friedrichs' constant
Original language description
This contribution presents a general numerical method for computing lower and upper bound of the optimal constant in Friedrichs? inequality. The standard Rayleigh-Ritz method is used for the lower bound and the method of a priori-a posteriori inequalities is employed for the upper bound. Several numerical experiments show applicability and accuracy of this approach.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Programs and Algorithms of Numerical Matematics 16
ISBN
978-80-85823-62-2
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
195-201
Publisher name
Institute of Mathematics, Academy of Sciences of the Czech Republic
Place of publication
Prague
Event location
Dolní Maxov
Event date
Jun 3, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000317994100030