Large separated sets of unit vectors in Banach spaces of continuous functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00506888" target="_blank" >RIV/67985840:_____/19:00506888 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10408147
Result on the web
<a href="http://dx.doi.org/10.4064/cm7648-1-2019" target="_blank" >http://dx.doi.org/10.4064/cm7648-1-2019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/cm7648-1-2019" target="_blank" >10.4064/cm7648-1-2019</a>
Alternative languages
Result language
angličtina
Original language name
Large separated sets of unit vectors in Banach spaces of continuous functions
Original language description
The paper concerns the problem of whether a nonseparable C(K) space must contain a set of unit vectors whose cardinality equals the density of C(K), and such that the distances between any two distinct vectors are always greater than . We prove that this is the case if the density is at most gamma, and that for several classes of C(K) spaces (of arbitrary density) it is even possible to find such a set which is 2-equilateral, that is, the distance between two distinct vectors is exactly 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ17-04197Y" target="_blank" >GJ17-04197Y: Dynamical systems and Banach spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Colloquium Mathematicum
ISSN
0010-1354
e-ISSN
—
Volume of the periodical
157
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
15
Pages from-to
173-187
UT code for WoS article
000477075600002
EID of the result in the Scopus database
2-s2.0-85069806327