DRAT proofs, propagation redundancy, and extended resolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00507739" target="_blank" >RIV/67985840:_____/19:00507739 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-24258-9_5" target="_blank" >http://dx.doi.org/10.1007/978-3-030-24258-9_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-24258-9_5" target="_blank" >10.1007/978-3-030-24258-9_5</a>
Alternative languages
Result language
angličtina
Original language name
DRAT proofs, propagation redundancy, and extended resolution
Original language description
We study the proof complexity of RAT proofs and related systems including BC, SPR, and PR which use blocked clauses and (subset) propagation redundancy. These systems arise in satisfiability (SAT) solving, and allow inferences which preserve satisfiability but not logical implication. We introduce a new inference SR using substitution redundancy. We consider systems both with and without deletion. With new variables allowed, the systems are known to have the same proof theoretic strength as extended resolution. We focus on the systems that do not allow new variables to be introduced. Our first main result is that the systems DRAT $${}^-$$, DSPR $${}^-$$ and DPR $${}^-$$, which allow deletion but not new variables, are polynomially equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule, they are also equivalent to DBC $${}^-$$. Without deletion and without new variables, we show that SPR $${}^-$$ can polynomially simulate PR $${}^-$$ provided only short clauses are inferred by SPR inferences. Our next main results are that many of the well-known “hard” principles have polynomial size SPR $${}^-$$ refutations (without deletions or new variables). These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies, and clique-coloring tautologies, SPR $${}^-$$ can also handle or-fication and xor-ification. Our final result is an exponential size lower bound for RAT $${}^-$$ refutations, giving exponential separations between RAT $${}^-$$ and both DRAT $${}^-$$ and SPR $${}^-$$.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05497S" target="_blank" >GA19-05497S: Complexity of mathematical proofs and structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Theory and Applications of Satisfiability Testing – SAT 2019
ISBN
978-3-030-24257-2
ISSN
0302-9743
e-ISSN
—
Number of pages
19
Pages from-to
71-89
Publisher name
Springer
Place of publication
Cham
Event location
Lisbon
Event date
Jul 9, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—