Total space in resolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00438303" target="_blank" >RIV/67985840:_____/14:00438303 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/FOCS.2014.74" target="_blank" >http://dx.doi.org/10.1109/FOCS.2014.74</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FOCS.2014.74" target="_blank" >10.1109/FOCS.2014.74</a>
Alternative languages
Result language
angličtina
Original language name
Total space in resolution
Original language description
We show quadratic lower bounds on the total space used in resolution refutations of random k-CNFs over n variables, and of the graph pigeonhole principle and the bit pigeonhole principle for n holes. This answers the long-standing open problem of whetherthere are families of k-CNF formulas of polynomial size which require quadratic total space in resolution. The results follow from a more general theorem showing that, for formulas satisfying certain conditions, in every resolution refutation there is amemory configuration containing many clauses of large width.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2014)
ISBN
978-1-4799-6517-5
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
641-650
Publisher name
IEEE
Place of publication
Piscataway
Event location
Philadelphia
Event date
Oct 18, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—