All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A composition theorem for randomized query complexity via Max-conflict complexity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00507748" target="_blank" >RIV/67985840:_____/19:00507748 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.64" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.64</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.64" target="_blank" >10.4230/LIPIcs.ICALP.2019.64</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A composition theorem for randomized query complexity via Max-conflict complexity

  • Original language description

    For any relation f subseteq {0,1}^n x S and any partial Boolean function g:{0,1}^m -> {0,1,*}, we show that R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * sqrt{R_{1/3}(g)}) , where R_epsilon(*) stands for the bounded-error randomized query complexity with error at most epsilon, and f o g^n subseteq ({0,1}^m)^n x S denotes the composition of f with n instances of g. The new composition theorem is optimal, at least, for the general case of relational problems: A relation f_0 and a partial Boolean function g_0 are constructed, such that R_{4/9}(f_0) in Theta(sqrt n), R_{1/3}(g_0)in Theta(n) and R_{1/3}(f_0 o g_0^n) in Theta(n). The theorem is proved via introducing a new complexity measure, max-conflict complexity, denoted by bar{chi}(*). Its investigation shows that bar{chi}(g) in Omega(sqrt{R_{1/3}(g)}) for any partial Boolean function g and R_{1/3}(f o g^n) in Omega(R_{4/9}(f) * bar{chi}(g)) for any relation f, which readily implies the composition statement. It is further shown that bar{chi}(g) is always at least as large as the sabotage complexity of g.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)

  • ISBN

    978-3-95977-109-2

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    64

  • Publisher name

    Schloss Dagstuhl, Leibniz-Zentrum für Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Patras

  • Event date

    Jul 8, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article