All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The class of (P7, C4, C5)-free graphs: Decomposition, algorithms, and chi-boundedness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422402" target="_blank" >RIV/00216208:11320/20:10422402 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j504dUk9rn" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=j504dUk9rn</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22499" target="_blank" >10.1002/jgt.22499</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The class of (P7, C4, C5)-free graphs: Decomposition, algorithms, and chi-boundedness

  • Original language description

    As usual, P_n (n &gt;= 1) denotes the path on n vertices, and C_n (n &gt;= 3) denotes the cycle on n vertices. For a family H of graphs, we say that a graph G is H-free if no induced subgraph of G is isomorphic to any graph in H. We present a decomposition theorem for the class of (P_7, C_4, C_5)-free graphs; in fact, we give a complete structural characterization of (P_7, C_4, C_5)-free graphs that do not admit a cliquecutset. We use this decomposition theorem to show that the class of (P_7, C_4, C_5)-free graphs is chi-bounded by a linear function (more precisely, every (P_7, C_4, C_5)-free graph G satisfies chi(G) = 3/2 omega(G)). We also use the decomposition theorem to construct an O(n(3)) algorithm for the minimum coloring problem, an O(n(2)m) algorithm for the maximum weight stable set problem, and an O(n(3)) algorithm for the maximum

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Volume of the periodical

    93

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    50

  • Pages from-to

    503-552

  • UT code for WoS article

    000488200000001

  • EID of the result in the Scopus database

    2-s2.0-85073931238