On a singular limit for the stratified compressible Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00507994" target="_blank" >RIV/67985840:_____/19:00507994 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.3233/ASY-191518" target="_blank" >http://dx.doi.org/10.3233/ASY-191518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ASY-191518" target="_blank" >10.3233/ASY-191518</a>
Alternative languages
Result language
angličtina
Original language name
On a singular limit for the stratified compressible Euler system
Original language description
We consider a singular limit for the compressible Euler system in the low Mach number regime driven by a large external force. We show that any dissipative measure-valued solution approaches a solution of the lake equation in the asymptotic regime of low Mach and Froude numbers. The result holds for the ill-prepared initial data creating rapidly oscillating acoustic waves. We use dispersive estimates of Strichartz type to eliminate the effect of the acoustic waves in the asymptotic limit.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Asymptotic Analysis
ISSN
0921-7134
e-ISSN
—
Volume of the periodical
114
Issue of the periodical within the volume
1-2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
59-72
UT code for WoS article
000485126800004
EID of the result in the Scopus database
2-s2.0-85070864083