A Turán-type theorem for large-distance graphs in Euclidean spaces, and related isodiametric problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508787" target="_blank" >RIV/67985840:_____/19:00508787 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10408156
Result on the web
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1300" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1300</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A Turán-type theorem for large-distance graphs in Euclidean spaces, and related isodiametric problems
Original language description
A large-distance graph is a measurable graph whose vertex set is a measurable subset of R^d, and two vertices are connected by an edge if and only if their distance is larger that 2. We address questions from extremal graph theory in the setting of large-distance graphs, focusing in particular on upper-bounds on the measures of vertices and edges of K_r-free large-distance graphs. Our main result states that if Asubset R^2 is a measurable set such that the large-distance graph on $A$ does not contain any complete subgraph on three vertices then the 2-dimensional Lebesgue measure of A is at most 2pi.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Comenianae
ISSN
0231-6986
e-ISSN
—
Volume of the periodical
88
Issue of the periodical within the volume
3
Country of publishing house
SK - SLOVAKIA
Number of pages
5
Pages from-to
625-629
UT code for WoS article
000484349000042
EID of the result in the Scopus database
2-s2.0-85073771534